a2 United States Patent

Kraemer et al.

US009460011B1

US 9,460,011 B1
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(1)

(52)

(58)

MEMORY REFERENCE ESTIMATION
METHOD AND DEVICE BASED ON
IMPROVED CACHE

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Marco Kraemer, Sindelfingen (DE);
Carsten Otte, Stuttgart (DE);
Christoph Raisch, Gerlingen (DE)

Inventors:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/967,595

Filed: Dec. 14, 2015

Int. CL.

GO6F 12/00 (2006.01)

GO6F 12/08 (2016.01)

GO6F 12/12 (2016.01)

U.S. CL

CPC ... GO6F 12/0811 (2013.01); GO6F 12/0875

(2013.01); GOGF 12/122 (2013.01); GO6F
12/128 (2013.01); GOGF 2212/283 (2013.01);
GOGF 2212/452 (2013.01); GOG6F 2212/621
(2013.01); GOG6F 2212/69 (2013.01)

Field of Classification Search
CPC GO6F 12/0811; GOG6F 12/0875; GO6F
12/122; GO6F 12/128; GO6F 2212/283;

306

e

E) 302
-
307 /ﬁ
] (2 (2]
302 302

w
[uirs
o

GOG6F 2212/621; GO6F 2212/69; GO6F
2212/452
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,308,247 B1 10/2001 Ackerman et al.
7,953,953 B2 5/2011 In et al.
8,244,954 B2 8/2012 Ganesh et al.
8,352,705 B2 1/2013 Agesen
8,438,363 Bl 5/2013 Koryakin et al.
2014/0089602 Al* 3/2014 Biswas GOGF 12/0804
711/144
2014/0297962 Al 10/2014 Rozas et al.

* cited by examiner

Primary Examiner — John Lane
(74) Attorney, Agent, or Firm — Cantor Colburn LLP;
Margaret McNamara

(57) ABSTRACT

A computer system that includes a processor, a memory and
a processor cache for the main memory with a check-in-
cache instruction may be provided. The processor executes
computer readable instructions stored in the memory that
include receiving a check-in-cache instruction from a check-
in-cache storage location. The instructions also include
responsive to receiving the check-in-cache instruction,
determining whether data bytes specified by the check-in-
cache instruction are at least partially available in the
processor cache. The instructions further include storing a
condition code of the determination result in a storage
location.

19 Claims, 6 Drawing Sheets

308

[32] 30| [37]

N
Bz~

2] (& [32]

/‘

312

U.S. Patent Oct. 4, 2016 Sheet 1 of 6 US 9,460,011 B1

104 102
PTE ref. bit
106
PTE ref. bit page frame
PTE ref. bit
FIG. 1 PRIOR ART
102 ~,
PTE
106
102 ~ PTE page frame
102 ~ PTE
202~ | storage key ref. bit —— 204

FIG. 2 PRIOR ART

U.S. Patent Oct. 4, 2016

306

(J

Sheet 2 of 6

308

302 302

[302] [304b] [302]

302 302

[302] [304b] [302]

m | o

N/

= /=

[302] [304b] [302]

N
EEl~,

[302] [304a] [302]

\

310

f}

312

US 9,460,011 B1

U.S. Patent Oct. 4, 2016 Sheet 3 of 6 US 9,460,011 B1

406
s OS 408
CPU —= _— 424
instruction ?__/
execution
404 CIC
interpretation
() N
e
411 412 control
cache & detection logic
414 — QT lﬁ
216 cache 416 cache
directory data

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet 4 of 6 US 9,460,011 B1

reset 506 page assigned to process w/o file backing
page -
referenced | ®
516
© o)
TN S 502 o
I)

508a page
Ve unreferenced

1|

508 page has been

referenced
page
clean
y 510
© e >
|—) § 504 g remove

512 page dirty

514 page has been referenced

FIG. 5

U.S. Patent

502, 504

Oct. 4, 2016

Sheet 5 of 6

US 9,460,011 B1

602 reset accessed,
add to active queue

\

604 wait for memory

pressure

N\

606 remove from

active queue

has page been
referenced 608

no

yes

610 reset accessed,
start write page to disk

612 wait for write
to disk completes

:

|
16

reset accessed,
add to active queue

yes

6

no

14 has page
een referenced

618 add page to free page list

FIG. 6

U.S. Patent Oct. 4, 2016 Sheet 6 of 6 US 9,460,011 B1

700

\

computer system
704
<
7 RAM |e >
702 108 712
processing 710 cache |k
unit 714
716 j
706 -~
714 722 network
I/O interfaces adapter
718 external
devices 720 display

FIG. 7

US 9,460,011 B1

1

MEMORY REFERENCE ESTIMATION
METHOD AND DEVICE BASED ON
IMPROVED CACHE

BACKGROUND

The present invention relates generally to a computer
system and memory management, and more specifically, to
a computer system that includes a processor with a cache for
caching main memory that is managed by an enhanced
memory management system.

Virtual machine (VM) concepts allow creating and run-
ning multiple operating environments on one physical server
at the same time. Because each virtual environment requires
its own operating system for running applications indepen-
dently, a virtualization layer (hypervisor) provides a layer
between the processing, storage and/or main memory, and
networking hardware and the software that runs on it. This
way, information technology cost may be lowered through
increased efficiency and flexibility. Each virtual environ-
ment emulates a complete hardware system. However, vir-
tual main memory areas need to be mapped to the real
physical main memory of the underlying hardware system.
Therefore, memory pages in the physical main memory may
be shared between different processes, e.g., of different
virtual machines or other processes. Memory pages in main
memory which are currently not accessed are typically
moved or pushed to disk and are not present in the physical
main memory.

The underlying paging algorithm goal is therefore to
move non-accessed pages to disk and to move required
pages to the main memory. The basic problem may be
described as efficiently identifying non-access pages to free
up main memory. The underlying complexity exists due to
shared memory pages and main memory. The same problem
exists for a mapping of main memory pages to cache
systems. There are currently some solutions for memory
reference tracking available in order to make paging deci-
sions.

U.S. Pat. No. 8,438,363 B1 describes a system, a method
and a computer program product for virtualizing a processor
including a virtualization system running on a computer
system and controlling memory pages through hardware
support for maintaining real paging structures.

U.S. Pat. No. 6,308,247 B1 discloses a page table entry
management method and apparatus for providing a micro-
kernel system with the ability to program a memory man-
agement unit on a PowerPC® family of processors. The
PowerPC processors define a limited set of page table entries
(PTEs) to maintain virtual to physical mappings. The page
table entry management method and apparatus solve the
problem of a limited number of PTEs by segment aliasing
when two or more user processes share the segment of the
memory.

However, almost all currently available architectures do
not provide 2-way accurate reference information of the
active page tracking. The available implementations provide
fast memory access times, but slow checking/resetting of
reference information. In the well-known Intel architecture,
each page table entry has a reference bit embedded. In order
to find the cumulative reference status of a page or all pages,
table entries need to be found which requires quite some
time. Pages of some dynamic shared library objects (DSOs),
e.g., libc, are found in most all address spaces and thus, have
many page table entries associated with them. Another
architecture, the System Z® architecture uses a reference bit
in a storage key, which is associated with each physical page

40

45

55

2

frame. Special-purpose instructions are required; and qui-
esce operations need to automatically read/set the storage
key, which in terms of performance can be relatively expen-
sive, even after an optimization.

Hence, there is a need for better management of memory
pages, particularly for identifying non-accessed pages to
determine infrequent accessed pages as candidates for being
moved from main memory to disk on a regular basis with
low computing overhead.

SUMMARY

An embodiment includes a computer system that com-
prises a processor, a main memory and a processor cache for
the main memory may be provided. The processor can
execute computer instructions for receiving a check-in-
cache instruction from a check-in-cache storage location.
The processor can also execute computer instructions for,
responsive to receiving the check-in-cache instruction,
determining whether data bytes specified by the check-in-
cache instruction are at least partially available in the
processor cache. The processor can further execute com-
puter instructions for storing a condition code of the deter-
mination result in a storage location.

According to another embodiment of the present inven-
tion, a method for memory management in a computer
system that comprises a processor, a main memory and a
processor cache for the main memory may be provided. The
method may comprise receiving a check-in-cache instruc-
tion from a check-in-cache storage location, determining,
responsive to receiving the check-in-cache instruction,
whether data bytes specified by the check-in-cache instruc-
tion are at least partially available in the processor cache,
and storing a condition code of the determination result in a
storage location.

It may be noted that the check-in-cache instruction may
not read-out the addressed data. Additionally, it may be
noted that the check-in-cache storage location may be the
main memory.

The proposed computer system and the related method for
memory management may offer a couple of advantages and
technical effects:

In contrast to existing technologies embodiments of the
here proposed system and method allow faster checking,
eliminating the need to reset reference information for
memory pages without traditional drawbacks of perfor-
mance penalties due to data read-out. By adding a determi-
nation at the end of an active queue of page table entries
about whether the memory page has been accessed and
positioning the entry in the active list again at the top of the
active queue instead of moving it to the inactive queue,
memory pages are not treated as inactive pages which are
managed in the inactive list.

Additionally, by adding a second determination at the end
of'the inactive queue of page table entries about whether the
memory page has been accessed and positioning the entry in
the active list again at the top of the active queue instead of
moving it to disk, the management of memory content
becomes much more effective. The check-in-cache instruc-
tion is key to both determinations just mentioned. The
check-in-cache instruction may be issued to determine
whether the page has been accessed, however, without a
computation-wise expensive read-out of the data. Addition-
ally, embodiments of the proposed technology also allow the
use of traditional methods, e.g., contemporary “page dirty
checks”, as a second indication for the memory page man-
agement algorithm.

US 9,460,011 B1

3

A further improvement may be seen that by improving the
performance of a reference determination a paging rate to
input/output (I/0) may be improved, which has been limited
by some prior art technologies, in particular those with a
large amount of memory and fast 1[/O-channels.

In the following, further embodiments are described:

According to one embodiment of the computer system,
the storage location may be a processor register, a processor
flag or a main memory location. Thus, the storage location
for the condition code of the determination may be stored in
any suitable place dependent on individual design criteria.
There are no real design limitations for the storage location.

According to one optional embodiment of the computer
system, the processor cache may comprise at least two
hierarchy levels. The hierarchy level directly caching the
main memory may be an inclusive cache, and the determi-
nation may be based on a determination whether the data
bytes are contained in the hierarchy level directly caching
the main memory. This implementation option may be one
option out of at least two, as can be seen from the next
embodiment.

According to this alternative embodiment of the computer
system, the processor cache may comprise at least two
hierarchy levels, a first and a second level, and the hierarchy
level directly caching the main memory may be a non-
inclusive cache. In this case, the determination may be based
on a determination whether the data bytes are contained in
the first hierarchy level or in the second hierarchy level
directly caching the main memory. Hence, the implementa-
tion of embodiments of the inventive technology may be
independent of the cache organization.

According to an embodiment of the computer system, the
processor may comprise a plurality of computing nodes,
each node comprising a plurality of processor chip units,
each processor chip unit comprising a plurality of processing
cores, wherein each computing node may comprise a local
cache controller. This may define a maximum hierarchy
level of processing unit design. However, the inventive
concept may also work with less, or even more, hierarchy
levels.

According to an optional embodiment of the computer
system, the local cache controller may have priority for a
determination of whether a memory page is cached. This
may imply that local cache controller belonging to a com-
puting node may check the local cache first before checking
the cache controllers of other nodes.

According to an embodiment of the computer system, a
determination of whether to perform a check-in-cache
instruction or to perform a reference bit check for a paging
decision, in particular for memory management, may be
performed by an operating system module. Thus, the
memory management may be controlled by software,
optionally as part of an operating system.

According to an embodiment of the computer system, the
determination performed by the operating system module
may be dependent on a memory page turn-over rate. A
threshold may be defined. If the page turn-over rate may
exceed the threshold, embodiments of the memory manage-
ment method may be used for relaying in the check-in-cache
instruction; in case the threshold may not or may just be
reached, the traditional memory management methods may
be used.

According to an embodiment of the computer system, the
main memory content may be managed according to a least
recently used concept, thus, the memory content may be

10

15

20

25

30

35

40

45

50

55

60

65

4

pushed to a storage device if a memory page may be
inactive. Specific caching and paging algorithms may con-
trol this process.

According to an additional embodiment of the computer
system, page memory table entries may be organized
according to a second chance least recently used algorithm.
A person skilled in the art will know that a second chance
least recently used algorithm is a modified form of a FIFO
(1** in, 1* out) page replacement algorithm. It may fare
relatively better than FIFO at little cost for the improvement.
It works by looking at the front of the queue as FIFO does,
but instead of immediately paging out that page, it checks to
see if its referenced bit is set. If it is not set, the page may
be swapped out. Otherwise, the referenced bit may be
cleared, the page may be inserted at the back of the queue
(as if it were a new page) and this process may be repeated.
It may also be thought of as a circular queue.

According to an embodiment of the computer system, the
check-in-cache instruction may return a result of a determi-
nation of an availability of a memory page or parts thereof
without loading the memory page to the processor cache if
the memory content is not in the processor cache. The result
of the determination may be stored as a bit for further
reference anywhere in the architecture.

According to a further embodiment of the computer
system, in case the check-in-cache instruction result is
indicative of a non-availability of the memory page or parts
thereof in the processor cache or the main memory, a
reference bit check is performed in the page table entries or
a storage key of a physical memory page. Thus, both
implementation options may use this technology. There are
no architectural imitations.

According to another embodiment of the computer sys-
tem, the reference bit check may only be performed in an
inactive list of the page table entries or in the storage key of
a physical memory page. Thus, the active list may not be
checked as part of this determination resulting in a perfor-
mance gain.

According to an embodiment of the computer system, the
check-in-cache instruction may specify a subsequent num-
ber of data bytes stored in the main memory. This may be
called the explicit form of the specification of the check-in-
cache instruction because a number of subsequent data bytes
may have to be specified. This may be viewed in contrast to
the next embodiment, the implicit form.

According to an embodiment of the computer system, a
subsequent number of data bytes stored in the main memory
may be specified by the check-in-cache instruction, i.e.,
specified implicitly. Hence, the number of bytes may not be
changed with the check-in-cache instruction. An exemplary
number of implicitly specified bytes—without being limited
to this number of bytes in this example—may, e.g., be 4 kB.
However, this implementation may not be as flexible as the
one described before having the explicit form, because the
number of bytes after an address specified by the check-in-
cache may be fixed.

Furthermore, embodiments may take the form of a related
computer program product, accessible from a computer-
usable or computer-readable medium providing program
code for use, by or in connection with a computer or any
instruction execution system. For the purpose of this
description, a computer-usable or computer-readable
medium may be any apparatus that may contain means for
storing, communicating, propagating or transporting the
program for use, by or in a connection with the instruction
execution system, apparatus, or device.

US 9,460,011 B1

5

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein
and are considered a part of the claimed invention. For a
better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 shows a block diagram of technology for memory
management using a reference bit embedded in the page
table entry for a single page frame;

FIG. 2 shows a memory management using a storage key;

FIG. 3 shows substantial components of a larger CPU
with 4 nodes in accordance with some embodiments of this
disclosure;

FIG. 4 shows a block diagram of how an operating system
uses a check-in-cache instruction for a memory management
in accordance with some embodiments of this disclosure;

FIG. 5 shows an embodiment of a memory management
using an active queue and an inactive queue for page table
entries in accordance with some embodiments of this dis-
closure; and

FIG. 6 shows a flowchart supporting the check-in-cache
instruction method in accordance with some embodiments
of'this disclosure, and FIG. 7 shows a computing system for
implementing some embodiments of this disclosure.

DETAILED DESCRIPTION

In the context of this description, the following conven-
tions, terms and/or expressions may be used:

The term ‘processor’ may denote a central processing unit
(CPU), like a general purpose CPU, of a computer system.
This may also include specific processors like graphic
processing units (GPUs), accelerators, or other signal pro-
cessing units.

The term ‘main memory’ or ‘memory’ may denote, e.g.,
random access memory (RAM) as used in virtually every
computer system for storing data and executing program
code. In typical cases, the main memory may lose its stored
information in case of a power off.

The term ‘processor cache’ may denote a specific memory
area of memory cells, typically geometrically located close
to the processor, to enable a fast access to data in the cache
if compared to an access of data in the main memory. One
task of the operating environment is to ensure that the cache
may be consistent with the content of the main memory. A
person skilled in the art will be knowledgeable about dif-
ferent kinds of caching algorithms. There may be different
cache hierarchy levels in a processing system; e.g., L1 to L4
caches, whereat the letter “L” stands for the level of the
cache.

The term ‘check-in-cache instruction’ may denote a new
form of an instruction, instrumental for an improved
memory management. The check-in-cache instruction may
return a result indicative of specific data being in a specific
cache without accessing the individual memory cells, i.e.,
without reading the data out.

The term ‘storage location’, in particular for storing a
reference of a determination result of whether a page has

10

15

20

25

30

35

40

45

50

55

60

65

6

been accessed, may denote here, a storage location allowing
a fast access by the processor on the caching algorithms in
general. Therefore, options for the storage location, e.g., for
a specific determination, and thus, just one bit, may be a
processor register or a part thereof, a processor flag or, a
main memory location, e.g., as part of a longer processor
status word.

The term ‘hierarchy level’, in particular hierarchy levels
of caches, may denote how close cache cells of a certain
level may be to a processing unit. The smaller the number of
the cache level, the closer the memory cells of that cash level
are to the processing unit. Thus, [.1 cache may be accessed
instantaneously by a processing unit, because the two ele-
ments are located as close as possible to each other for
immediate data access.

The term ‘inclusive cache’ may denote a cache design in
which all data in the cache level, having a lower number than
another cache level, are also comprised in a cache having a
higher level number; i.e., in an inclusive cache all data of an
L1 cache are also be comprised somewhere in a correspond-
ing [.2 cache. This may also be called “strictly inclusive”.
This strict order is not implemented in a ‘non-inclusive
cache’. The advantage of exclusive caches may be that they
store more data. This advantage may be bigger when the
exclusive L1 cache is comparable to the L2 cache, and may
be diminished if the L2 cache is many times larger than the
L1 cache. When the L1 cache may miss and the [.2 cache
may hit on an access, the hitting cache line in the [.2 cache
is exchanged with a line in the L.1. This exchange may be
quite a bit more work than just copying a line from L2 cache
to a L1 cache, which is what an inclusive cache does.

In the following, a detailed description of the figures will
be given. All instructions in the figures are schematic.
Firstly, a block diagram of a known memory management
method may be described. Afterwards, different embodi-
ments of the proposed computer system using the check-in-
cache instruction as well as embodiments of the method for
memory management in a computer system will be
described.

FIG. 1 shows a block diagram of contemporary technol-
ogy for memory management using a reference bit 102
embedded in the page table entry 104 for a single page frame
106. In order to find a cumulative reference status of a
memory page, all page table entries need to be found and
examined. This may be quite time consuming. Pages of
some dynamically shared objects (DSO), like libc, may be
found in pretty much all address spaces of all virtual
machines running on a physical processor. Thus, they all
may have page table entries associated with it. The required
overhead of this traditional technology can be relatively
large.

FIG. 2 shows a memory management using a storage key,
such as that used by System z central execution complexes
(CECs). A storage key 202 which may also include an
associated reference bit 204. The storage key 202 with the
reference bit 204 may be associated with each physical page
frame, indicative of a change of the stored content of that
page frame. Special purpose instructions may be required to
read the reference bit. For example, quiesce operations can
be used to atomically read/set the storage key.

FIG. 3 shows a substantial part of a larger CPU. Four
processor or computing nodes 306, 308, 310, 312 are shown.
The IBM System z architecture may be used as example.
Each of the computing nodes 306, 308, 310, 312 may
comprise a plurality of processing units 302. Each process-
ing unit 302 may comprise a plurality of cores (not shown).
In case of the IBM System z architecture each processing

US 9,460,011 B1

7

unit 302 may manage its own level 1 (L1), level 2 (L.2) and
level 3 (L3) cache. Other processor architectures may have
a different number of levels of caches as well as a different
number of hierarchy levels inside the processing units.

As shown, each computing node 306, 308, 310, 312 may
have a dedicated cache controller 304a, 3045 responsible for
communication and data exchange between a last level
cache, in the example of the System z [.4 cache, and the
main memory. The differentiation between cache controller
1044 and the cache controllers 3045 is made because
embodiments may ensure that a local cache controller 1045
may be checked first before a request is issued to cache
controllers 104a of other computing nodes 306, 308, 310.
Thus, if processing unit 302a needs a memory page (not
shown) in its cache, the local cache controller 304a is
checked first before the other cache controllers 3045 are
checked.

The other “remote” cache controllers 3045 are only
checked if parts of the memory page is not cached locally,
i.e., controlled by cache controller 304a. A page with no data
resident in cache is considered to be inactive.

FIG. 4 shows a block diagram how an operating system
can use a check-in cache instruction for memory manage-
ment in accordance with embodiments. In the block 402
“CPU instruction execution” unit, a check-in-cache instruc-
tion 404 is issued 406, and operating system 408 controlled.
The instruction execution unit 402 may recognize the new
check-in-cache instruction. The check-in-cache instruction
may comprise the address to be verified. The check-in-cache
instruction 404 interpretation forwards 410 the address and
the page size to the control and detection logic 412 of the
cache 411. The control and detection logic 412 starts 414,
and a cache 416 directory lookup on the memory page
granularity is performed. The control and detection logic
412 tracks 418 if the cache directory look-up did succeed. If
“yes” it suppresses a read-out of the cache data 420. The
control and detection logic 412 then returns 422 hit/miss
information to the check-in-cache instruction 404 as a return
value. Finally, the check-in-cache instruction 404 continues
and returns 424 the result as status back to the operating
system 408. The operating system 408 algorithm acts then
accordingly.

FIG. 5 shows an embodiment of a memory management
using active queue 502 for page table entries in accordance
with embodiments. At the head 502a of the active queue
502, a page address assigned 506 to a process without a file
backing is added to active queue 502. Over time, more and
more references to memory pages are added to the active
queue 502. Thus, earlier added references are moved, step
by step, through the queue in the direction of the tail 5024
of'the active queue 502. From here, a reference to a memory
page may be moved to the head 5044 of the inactive queue
504. However, in accordance with embodiments, it may be
checked using the check-in-cache instruction whether the
corresponding memory page has been referenced 508. If that
is the case, the memory page reference entry is again added
to the head 5024 of the active queue 502. Thus, the move-
ment of the reference for the memory page to the inactive
queue 504 may only be performed if the corresponding page
has not been referenced, 508a.

The movement of the references for memory page
through the inactive queue 504 is done in a comparable way
to the movement of references for memory page through the
active queue 502. If a new entry is added at the head 504a,
the rest of the inactive queue 504 is moved one position to
the right (in the diagram shown in FIG. 5).

10

15

20

25

30

35

40

45

50

55

60

65

8

At the tale 5045 of the inactive queue 504, a reference for
a memory page may be removed 510 in case a memory page
is clean, meaning that the reference for the memory page is
simply moved out of the queue. “Clean” may denote here
that the cache entries and the main memory entries corre-
spond to each other. The cache memory cells have not been
modified if compared to the corresponding main memory
cells. In case the corresponding memory page is changed
(dirty), the reference for the memory page is again moved
512 to the head 504a of the inactive queue 504. However,
the check-in-cache instruction comes into play and if the
corresponding page has been referenced 512 (dirty page),
the reference for the memory page is again moved 514 to the
head 502a of the active queue 502. In that case, another
action may be required, i.e., a reset, 516, of the page
referenced bit of the reference for the corresponding
memory page in the active queue 502.

It may be noted that before a reference for a memory page
is moved from the tail 502a or 5045 of the respective queue
502, 504, a check-in cache instruction is executed under the
control of the operating system, controlling the memory
management process. However, in case of the determination
at the tail 5045 of the inactive queue 504, a check-in-cache
instruction may be executed first. If the check-in-cache
result is negative, the “dirty check” is triggered. If the
check-in-cache instruction returns a positive result, no ref-
erence check is performed. The result of the “dirty check”
may also return a prior art reference check, which is used as
a second indication for the caching algorithm.

FIG. 6 shows the just described embodiment as flowchart.
Reference numerals 502, 504 symbolize the active queue
502 and the inactive queue of FIG. 5. If a new PTE is added
to the page table, the reference bit (here, “accessed”) is reset
602. Then, the caching algorithm may wait 604, until the
memory gets under pressure, i.e., the cache does not provide
enough memory cells to cache main memory page frames.
At this stage 606 a PTE may be removed from the active
queue 502. At that point in time, it may be determined 608
whether the page may have been referenced, i.e., accessed
since the PTE has been added to the active queue 502. In
case of “yes”, the process starts from the beginning 602.

In case of “no” the referenced bit or access bit may be
reset 610 and a write to disk of the memory page may be
started. The back arrow from block 610 to block 604, i.e.,
“wait for memory pressure”, may indicate that the process
has to wait for the “write page to disk” 610 to complete (I/O
completion). In practical terms, the PTE may again be added
to the head 5044 of the inactive list 504 for a second round
on the inactive list 504 assuming that the I/O has been
completed when the PTE reaches the tail 50454 if the inactive
list again.

As shown at block 612, the process waits for the write to
disk to be completed. Then, it may again be determined 614
whether the page has been accessed, i.e., referenced since
the entry into the inactive queue 504. In case of “no”, the
page may be added 618 to the free pages list. In case of
“yes”, the referenced bit may be reset 616 (reset “assessed”)
and the PTE may be added again to the head 502a of the
active queue 502.

A person skilled in the art may understand that the actions
“reset accessed” in blocks 602, 610 and 616 as well as the
two determinations of whether the page has been accessed at
608, 614 are different than contemporary methods.

Embodiments of the invention may be implemented
together with virtually any type of modified computer,
regardless of the platform being suitable for storing and/or
executing program code. FIG. 7 shows, as an example, a

US 9,460,011 B1

9

computing system 700 suitable for executing program code
related to the proposed method.

The computing system 700 is only one example of a
suitable computer system and is not intended to suggest any
limitation as to the scope of use or functionality of embodi-
ments of the invention described herein. Regardless, com-
puter system 700 is capable of being implemented and/or
performing any of the functionality set forth hereinabove. In
the computer system 700, there are components, which are
operational with numerous other general purpose or special
purpose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
computer system/server 700 include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any
of the above systems or devices, and the like. Computer
system/server 700 may be described in the general context
of computer system-executable instructions, such as pro-
gram modules, being executed by a computer system 700.
Generally, program modules may include routines, pro-
grams, objects, components, logic, data structures, and so on
that perform particular tasks or implement particular abstract
data types. Computer system/server 700 may be practiced in
distributed cloud computing environments where tasks are
performed by remote processing devices that are linked
through a communications network. In a distributed cloud
computing environment, program modules may be located
in both local and remote computer system storage media
including memory storage devices.

As shown in the FIG. 7, computer system/server 700 is
shown in the form of a general-purpose computing device.
The components of computer system/server 700 may
include, but are not limited to, one or more processors or
processing units 702, a system memory 704, and a bus 706
that couples various system components including system
memory 704 to the processor 702. Bus 706 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using
any of a variety of bus architectures. By way of example,
and not limitation, such architectures include Industry Stan-
dard Architecture (ISA) bus, Micro Channel Architecture
(MCA) bus, Enhanced ISA (EISA) bus, Video Electronics
Standards Association (VESA) local bus, and Peripheral
Component Interconnects (PCI) bus. Computer system/
server 700 typically includes a variety of computer system
readable media. Such media may be any available media that
is accessible by computer system/server 700, and it includes
both, volatile and non-volatile media, removable and non-
removable media.

The system memory 704 may include computer system
readable media in the form of volatile memory, such as
random access memory (RAM) 708 and/or cache memory
710. Computer system/server 700 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 712 may be provided for reading from and writing to
a non-removable, non-volatile magnetic media (not shown
and typically called a ‘hard drive’). Although not shown, a
magnetic disk drive for reading from and writing to a
removable, non-volatile magnetic disk (e.g., a ‘tloppy disk’),
and an optical disk drive for reading from or writing to a

10

15

20

25

30

35

40

45

50

55

60

65

10

removable, non-volatile optical disk such as a CD-ROM,
DVD-ROM or other optical media may be provided. In such
instances, each can be connected to bus 706 by one or more
data media interfaces. As will be further depicted and
described below, memory 704 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 714, having a set (at least one) of program
modules 716, may be stored in memory 704 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
716 generally carry out the functions and/or methodologies
of embodiments of the invention as described herein.

The computer system/server 700 may also communicate
with one or more external devices 718 such as a keyboard,
a pointing device, a display 720, etc.; one or more devices
that enable a user to interact with computer system/server
700; and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server 700 to communicate
with one or more other computing devices. Such commu-
nication can occur via Input/Output (I/O) interfaces 714.
Still yet, computer system/server 700 may communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 722. As
depicted, network adapter 722 may communicate with the
other components of computer systenm/server 700 via bus
706. It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with computer system/server 700. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, etc.

The present invention may be embodied as a system, a
method, and/or a computer program product. The computer
program product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present invention.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the

US 9,460,011 B1

11

invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Java, Smalltalk,
C++ or the like, and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide

10

30

35

40

45

12

area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited

US 9,460,011 B1

13

to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A computer system comprising:

a memory having computer readable instructions, the

memory including a main memory;

a processor cache for the main memory; and

a processor for executing the computer readable instruc-

tions, the computer readable instructions comprising:
receiving a check-in-cache instruction from a check-in-
cache instruction storage location; and

responsive to receiving the check-in-cache instruction,

determining whether data bytes specified by the check-
in-cache instruction are at least partially available in the
processor cache without accessing the processor cache
data or loading data to the processor cache,

storing a condition code of the determination result in a

storage location.

2. The computer system according to claim 1, wherein the
storage location is a processor register, a processor flag or a
main memory location.

3. The computer system according to claim 1, wherein the
processor cache comprises at least two hierarchy levels, the
hierarchy level directly caching the main memory is an
inclusive cache, and the determining is based on a determi-
nation of whether the data bytes are contained in the
hierarchy level directly caching the main memory.

4. The computer system according to claim 1, wherein the
processor cache comprises at least two hierarchy levels
including a first and a second level, the hierarchy level
directly caching the main memory is a non-inclusive cache,
and the determining is based on a determination of whether
the data bytes are contained in the first hierarchy level or in
the second hierarchy level directly caching the main
memory.

5. The computer system according to claim 1, wherein the
processor comprises a plurality of nodes, each node com-
prising a plurality of processor chip units, each processor
chip unit comprising a plurality of processing cores, wherein
each node comprises a local cache controller.

6. The computer system according to claim 5, wherein the
local cache controller has priority for a determination of
whether a memory page is cached.

7. The computer system according to claim 1, wherein a
determination of whether to perform a check-in-cache
instruction or to perform a reference bit check for a paging
decision is performed by an operating system module.

8. The computer system according to claim 7, wherein the
determination performed by the operating system module is
dependent on a page turn-over rate.

9. The computer system according to claim 1, wherein the
main memory content is managed according to a least
recently used concept.

10. The computer system according to claim 1, wherein
page memory table entries are organized according to a
second chance least recently used algorithm.

11. The computer system according to claim 1, wherein
the check-in-cache instruction returns a result of a determi-
nation of an availability of a memory page or parts thereof

14

without loading the memory page to the processor cache if
the memory content is not in the processor cache.
12. The computer system according to claim 11, wherein
in case the check-in-cache instruction result is indicative of
5 anon-availability of the memory page or parts thereof in the
processor cache of the main memory, a reference bit check
is performed in the page table entries or a storage key of a
physical memory page.
13. The computer system according to claim 11, wherein
10 the reference bit check is only performed in an inactive list
of the page table entries or in the storage key of a physical
memory page.
14. The computer system according to claim 1, wherein
the check-in-cache instruction specifies a subsequent num-
15 ber of data bytes stored in the main memory.

15. A method for a memory management in a computer
system comprising a processor, a main memory and a
processor cache for the main memory, the method compris-
ing:

receiving a check-in-cache instruction from a check-in-

cache storage location;

determining, responsive to receiving the check-in-cache

instruction, whether data bytes specified by the check-
in-cache instruction are at least partially available in the
processor cache without accessing the processor cache
data or loading data to the processor cache; and

storing a condition code of the determination result in a

storage location.

16. The method according to claim 15, wherein the
storage location is a processor register, a processor flag or a
main memory location.

17. The method according to claim 15, wherein one of:

the processor cache comprises at least two hierarchy

levels, the hierarchy level directly caching the main
memory is an inclusive cache, and the determining is
based on a determination of whether the data bytes are
contained in the hierarchy level directly caching the
main memory; and

the processor cache comprises at least two hierarchy

levels, a first and a second level, the hierarchy level
directly caching the main memory is a non-inclusive
cache, and the determination is based on a determina-
tion of whether the data bytes are contained in the first
hierarchy level or in the second hierarchy level directly
caching the main memory.

18. The method according to claim 15, wherein a deter-
mination whether to perform a check-in-cache instruction or
to perform a reference bit check for a paging decision is
performed by an operating system module.

19. A computer program product for a memory manage-
ment in a computer system comprising a processor, a main
memory and a processor cache for the main memory, the
computer program product comprising a computer readable
storage medium having program instructions embodied
therewith, the program instructions being executable by the
computer system to cause the computer system to:

receive a check-in-cache instruction from a check-in-

cache storage location;

determine, responsive to receiving the check-in-cache

instruction, whether data bytes specified by the check-
in-cache instruction are at least partially available in the
processor cache without accessing the processor cache
data or loading data to the processor cache; and

store a condition code of the determination result in a

storage location.

20

25

30

40

45

50

65
k0 ok &k ok

